h视频在线免费观看,免费看国产三级片网站,对白脏话肉麻粗话AV,337p日本欧洲亚洲高清鲁鲁

技術(shù)文章您現(xiàn)在的位置:首頁 > 技術(shù)文章 > 返馳式拓撲設(shè)計——實現(xiàn)Z佳化電源
返馳式拓撲設(shè)計——實現(xiàn)Z佳化電源
更新時間:2012-05-11   點擊次數(shù):3018次

返馳式拓撲設(shè)計——實現(xiàn)*化電源

 

返馳式(flyback)拓樸是zui常見的式電源拓樸結(jié)構(gòu),因為它可以用個低邊開關(guān)電晶體和有限的外部元件數(shù)提供多個輸出。不過,返馳式電源也存在些特殊,如果設(shè)計人員沒有充分理解并對其進行分析,就可能它的整體表現(xiàn)。

  針對這種拓樸結(jié)構(gòu),本文將以簡單的數(shù)學方法揭開返馳式電源設(shè)計神秘面紗,指導(dǎo)設(shè)計人員完成個*化的設(shè)計。

  返馳式轉(zhuǎn)換器

  根據(jù)應(yīng)用的不同,直流-直流應(yīng)用(DC/DC應(yīng)用)可能需要多個輸出,而且需要輸出。此外,輸入與輸出的可能必須標準或提供阻抗匹配。

  式電源不能防止用戶接觸到潛在的致命電壓和電流,而且還有能方面的優(yōu)勢。利用中斷接地迴路,式電源可以保持儀器精密度,并能在不犧牲匯流排優(yōu)點的條件下順利地透過負電源匯流排提供正穩(wěn)壓電壓。

  對設(shè)計人員來說,返馳式拓樸結(jié)構(gòu)歷來是輸出功率100W以下的電源式轉(zhuǎn)換器的。這種拓樸結(jié)構(gòu)只需要個磁元件和個輸出整流管,因而具有簡單和低成本的優(yōu)勢,同時它也可以輕鬆實現(xiàn)多工輸出。

  但返馳式拓樸結(jié)構(gòu)的缺點是需要個容值的輸出電容器,功率開關(guān)管和輸出二體的電流應(yīng)力較,氣隙區(qū)渦流損耗較,變壓器鐵芯較大以及可能存在的EMI問題。

  返馳式轉(zhuǎn)換器源于降壓-升壓拓樸結(jié)構(gòu),其主要缺點是只在開關(guān)MOSFET導(dǎo)通時間內(nèi)才從源收集能量。在后來的切斷期間,來自次側(cè)繞組的這種能量從電感傳遞到輸出端。這是返馳式和降壓-升壓拓樸結(jié)構(gòu)的特點。(圖1)

  

  圖1:執(zhí)行在連續(xù)導(dǎo)通模式下的返馳式電源。

  次側(cè)電流和二次側(cè)電流同時流過時,返馳式變壓器并不像傳統(tǒng)變壓器那樣正常工作,實際上只有小部份能量(磁化能量)被儲存在變壓器中。返馳式變壓器像是同鐵芯上的多個電感器,而非個的變壓器。理想的情況是,變壓器并不儲存能量,的能量都在瞬間從次側(cè)轉(zhuǎn)移到二次側(cè)。

  返馳式變壓器可作為儲能裝置,能量儲存在鐵芯的氣隙或坡莫合金粉芯的分佈式氣隙當中。

  電感變壓器的設(shè)計應(yīng)盡量減少漏電感、交流繞組損耗和磁芯損耗。

  漏電感(Leakage inductance)是次側(cè)電感的部份,未與二次側(cè)電感相互耦合。保持盡可能低的漏電感十分重要,因為它會降低變壓器的效率,還會導(dǎo)致開關(guān)元件的漏出現(xiàn)。漏電感可被看作為儲存在變壓器中的部份能量,它不會轉(zhuǎn)移到二次側(cè)和負載。這種能量需要通過個外部緩衝器在次側(cè)耗散掉。緩衝器的配置將在后面予以討論。

  當MOSFET開啟且電壓施加在次側(cè)繞組時,次側(cè)電流線上升。輸入電流的變化是由輸入電壓、變壓器次側(cè)電感和導(dǎo)通時間決定的。在這段時間內(nèi),能量被儲存在變壓器鐵芯中,輸出二體D1被反向偏置,能量不會轉(zhuǎn)移到輸出負載。當MOSFET關(guān)閉時,磁場開始下降,顛倒了次側(cè)和二次側(cè)繞組之間的。D1被正向偏置,能量轉(zhuǎn)移到負載。

  斷續(xù)傳導(dǎo)模式與連續(xù)傳導(dǎo)模式:

  返馳式轉(zhuǎn)換器像其他的拓樸結(jié)構(gòu)樣有兩種不同的工作模式──斷續(xù)導(dǎo)通模式(DCM)和連續(xù)導(dǎo)通模式(CCM)。當輸出電流的增加過值時,斷續(xù)模式設(shè)計電路將轉(zhuǎn)為連續(xù)模式。在斷續(xù)模式時,導(dǎo)通時間內(nèi)儲存在次側(cè)的能量都會于下週期開始之前轉(zhuǎn)移到二次側(cè)和負載;而且,在二次電流達到零值和下個週期開始間的瞬間還會有死區(qū)時間。在連續(xù)模式下,當下個週期開始時,仍會有些能量留在二次側(cè)。返馳式轉(zhuǎn)換器可以在兩種模式下執(zhí)行,但它具有不同的特徵。

  斷續(xù)導(dǎo)通模式 方面具有較的峰值電流,因此在切斷時有較的輸出電壓。另方面,它具有快的負載瞬態(tài)響應(yīng),次側(cè)電感較低,因此變壓器尺寸可以較小。二體的反向恢復(fù)時間并不重要,因為在反向電壓施加之前正向電流為零。在斷續(xù)導(dǎo)通模式下,電晶體的開啟隨零集電電流出現(xiàn),降低了傳導(dǎo)EMI的噪音。

  連續(xù)導(dǎo)通模式 具有較低的峰值電流,并因此降低了輸出電壓。但由于它的右半平面(RHP)零點迫使轉(zhuǎn)換器的總頻寬降低,所以其迴路比較復(fù)雜。由于連續(xù)導(dǎo)通模式對大多數(shù)應(yīng)用而言是加的選擇,因此以上對該模式進行了多的細節(jié)分析。

確定返馳式變壓器:繞組匝數(shù)比及其電感

  設(shè)計人員不得不處理的*個難題就是確定返馳式變壓器。通常他們可以從返馳式電源變壓器標準目錄中進行選擇,而無需昂貴的定製變壓器。許多供應(yīng)商都可以針對不同應(yīng)用和功率大小提供完整系列的變壓器,但重要的是要了解如何選擇zui合適的變壓器。除了二次側(cè)繞組的功率大小和匝數(shù),變壓器還可根據(jù)次側(cè)/二次側(cè)繞組匝數(shù)比,以及次側(cè)或二次側(cè)電感來分類。

  如果忽略開關(guān)MOSFET和輸出整流二體兩端壓降的影響,在穩(wěn)態(tài)執(zhí)行條件下,導(dǎo)通時間()的電壓*秒應(yīng)該等于切斷期間()電壓*秒:

  

  (1)

  公式中:

  是輸入電壓

  是輸出電壓

  是返馳式變壓器的次側(cè)匝數(shù)/二次側(cè)匝數(shù)匝比

  那么,zui大佔空比的數(shù)匝比和zui小輸入輸出電壓之間的直接關(guān)係是:

  

  (2)

  其中D為佔空比:/開關(guān)週期。

  在許多情況下,選定的zui大佔空比為5,但是在寬輸入電壓範圍的應(yīng)用中,重要的是要了解如何*化以下關(guān)係:zui大佔空比、變壓器匝比、峰值電流和額定電壓。

  返馳式拓樸結(jié)構(gòu)的主要優(yōu)點是可以在佔空比大于5的條件下工作。zui大佔空比的增加降低了變壓器次側(cè)的峰值電流,因而達到次側(cè)銅變壓器利用係數(shù)的效果,并降低輸入源的紋波。同時,zui大佔空比的提可增加主開關(guān)MOSFET漏源之間的zui大應(yīng)力電壓,并增加二次側(cè)的峰值電流。

  在開始設(shè)計轉(zhuǎn)換器之前,重要的是要了解zui大佔空比、變壓器次側(cè)/二次側(cè)匝數(shù)比(Np/Ns)、次側(cè)MOSFET的zui大電壓應(yīng)力、次側(cè)和二次側(cè)zui大電流之間的關(guān)係。

  公式(2)顯示輸出電壓Vo和輸入電壓Vi(因為其簡單沒有考慮Q1和二次側(cè)整流管Q2兩端的壓降)之間的主要關(guān)係。為了在整個輸入電壓範圍Vo的穩(wěn)壓,zui大佔空比可以任意選定個《1的理論值。

  然后可以計算Np/Ns:

  

 ?。?)

  此處表示主MOSFET的漏源之間的zui大電壓,可由公式(4)及公式(5)和(6)得知,分別表示了變壓器次側(cè)和二次側(cè)的平均電流。

  公式中:

  是二次側(cè)整流二體的正向壓降

  是傳導(dǎo)期間開關(guān)MOSFET的壓降

  是整體電源效率

  是zui大輸出電流

  透過zui大化佔空比的利用係數(shù)U(D)函數(shù)可以得到*佔空比:

  

  利用係數(shù)(Ui)是用輸出功率除以二次側(cè)開關(guān)MOSFET和整流二體的總zui大應(yīng)力之和得出的。

  

  圖2:返馳式轉(zhuǎn)換器的利用係數(shù)與佔空比的關(guān)係,zui大化利用係數(shù)的佔空比為30-4。

  圖中的兩條曲線顯示只考慮開關(guān)MOSFET應(yīng)力(藍色虛線)計算出來的利用係數(shù),以及考慮二次側(cè)開關(guān)MOSFET和整流二體(紅色虛線)的利用係數(shù)。

  如果要*化額定輸入電壓的電源效率,次側(cè)/二次側(cè)變壓器匝數(shù)比就得利用佔空比來計算,以使利用係數(shù)zui大化,其值在30-4之間。

  上面的曲線考慮的是主動元件上的理論應(yīng)力電壓。在實際進行時,重要的是評估MOSFETzui大應(yīng)力電壓和變壓器數(shù)匝數(shù)比如何隨所選擇的zui大佔空比而變化,并選擇個可在開關(guān)MOSFET的zui大擊穿電壓內(nèi)給出‘圓形’(round)匝數(shù)比值。
確定次側(cè)電感

  選擇次側(cè)和二次側(cè)電感有幾個標準。

  *,選擇可從滿載到某些zui小負載均在連續(xù)模式執(zhí)行的次側(cè)電感。

  第二,透過確定zui大二次側(cè)紋波電流來運算次側(cè)和二次側(cè)電感。

  第叁,運算次側(cè)電感,以保持盡可能的右半平面零點(RHP),因而大幅地提閉環(huán)穿越頻率。

  實際上,*個標準只用于特殊情況,而選擇的磁化電感可作為變壓器尺寸、峰值電流和RHP零點之間的*折衷。

  為了確定二次側(cè)zui大紋波電流來計算次側(cè)和二次側(cè)電感,可用以下公式計算出二次側(cè)電感()和次側(cè)電感():

  

 ?。?)

  公式中是開關(guān)頻率,是允許的二次側(cè)紋波電流,通常設(shè)置在約為輸出電流值的30-50%:

  

 ?。?)

  那么,等效次側(cè)電感可從以下公式獲得:

  

 ?。?0)

  如前所述,次側(cè)電感和佔空比會影響右半平面零點(RHP)。RHP增加了閉環(huán)特的相位滯后,迫使zui大穿越頻率不過RHP頻率的1/4。

  RHP是佔空比、負載和電感的函數(shù),可引發(fā)和增加迴路增益,同時降低迴路相位裕度。通常的做法是確定zui差情況的RHPZ頻率,并設(shè)置迴路單位增益頻率低于RHPZ的叁分。

  在返馳式拓樸結(jié)構(gòu)中,運算RHPZ的公式是:

  

 ?。?1)

  可以選擇次側(cè)電感來削弱這種不良效果。

  圖3的曲線顯示次側(cè)電感對次側(cè)和二次側(cè)電流和RHP零點的影響:隨著電感的增加紋波電流會減少,因此輸入/輸出紋波電壓和電容器大小也可能減少。但增加的電感增加了變壓器次側(cè)二次側(cè)繞組數(shù),同時減少了RHP零點。

  

  圖3:返馳式設(shè)計次側(cè)、二次側(cè)紋波電流、RHP零點與次側(cè)電感的關(guān)係。

  般建議不應(yīng)使用過大的電感,以免影響整個系統(tǒng)的整體閉環(huán)能和尺寸,以及返馳式變壓器的損耗。上述圖形和公式只在連續(xù)導(dǎo)通模式下的返馳式執(zhí)行才。

  選擇功率開關(guān)MOSFET并計算其損耗

  MOSFET的選擇基于zui大應(yīng)力電壓、zui大峰值輸入電流、總功率損耗、zui大允許工作溫度,以及驅(qū)動器的電流驅(qū)動能力。MOSFET的源汲擊穿(Vds)必須大于:

  

 ?。?2)

  MOSFET的連續(xù)漏電流(Id)必須大于次側(cè)峰值電流(公式15)。

  除了zui大額定電壓和zui大額定電流,MOSFET的其他叁個重要參數(shù)是Rds(on)、閘閾值電壓和閘電容器。

  開關(guān)MOSFET的損耗有叁種類型,即導(dǎo)通損耗、開關(guān)損耗和閘電荷損耗:

  導(dǎo)通損耗等于損耗,因此在導(dǎo)通狀態(tài)下源和汲之間的總電阻要盡可能zui低。

  開關(guān)損耗等于:開關(guān)時間*Vds*I*頻率。開關(guān)時間、上升時間和下降時間是MOSFET閘汲米勒電荷Qgd、驅(qū)動器內(nèi)部電阻和閾值電壓的函數(shù),zui小閘電壓Vgs(th)電流通過MOSFET的漏源。

  閘電荷損耗是由閘電容器充電,以及隨后的每個週期對地放電引起的。閘電荷損耗等于:頻率* Qg(tot)* Vdr

  不幸的是,電阻zui低的元件往往有較的閘電容器。

  開關(guān)損耗也會受閘電容器的影響。如果閘驅(qū)動器對大容量電容器充電,則MOSFET需要時間進行線區(qū)提升,則損耗增加。上升時間越快,開關(guān)損耗越低。不幸的是,這將導(dǎo)致頻噪音。

  導(dǎo)通損耗不取決于頻率,它還取決于和次側(cè)RMS電流的平方:

  

 ?。?3)

  在連續(xù)導(dǎo)通模式下,返馳式執(zhí)行的次側(cè)電流看來像圖4上部所示的梯形波形。

  Ib等于次側(cè)峰值電流:

  

  Ia是從以上的公式(5)得出的平均電流,減去半ΔIp電流為:

  

 ?。?6)

  那么開關(guān)管的RMS電流可從下式得到:

  

  (17)

  或其迅速接近:

  

(18)

  開關(guān)損耗()取決于轉(zhuǎn)換期間的電壓和電流、開關(guān)頻率和開關(guān)時間,如圖4所示。

  

  圖4:換向期間MOSFET兩端的電流和電壓波形。

  在導(dǎo)通期間,MOSFET兩端的電壓為輸入電壓加反映在次側(cè)的輸出電壓,電流等于平均中間zui電流減去半ΔIp:

  

 ?。?9)

  

 ?。?0)

  在關(guān)閉過程中,MOSFET兩端的電壓為輸入電壓加反映在次側(cè)繞組的輸出電壓,再加上用于箝位的齊納箝位電壓和吸收漏電感。開關(guān)管切斷電流為次側(cè)峰值電流。

  

 ?。?1)

  開關(guān)時間取決于zui大閘驅(qū)動電流和MOSFET的總閘電荷,MOSFET寄生電容器是調(diào)節(jié)MOSFET開關(guān)時間的zui重要的參數(shù)。電容器Cgs和Cgd取決于元件的幾何尺寸并與源電壓成反比。

  通常MOSFET製造商沒有直接提供這些電容器值,但是可以從Ciss、Coss和Crss值獲得。

  導(dǎo)通開關(guān)時間可以使用下列公式用閘電荷來估計:

  

 ?。?2)

  

 ?。?3)

  公式中:

  Qgd是閘漏電荷

  Qgs是閘源電荷

  是當驅(qū)動電壓被拉升至驅(qū)動電壓時的導(dǎo)通時間驅(qū)動電阻

  是當驅(qū)動電壓被下拉至接地電壓時的內(nèi)部驅(qū)動電阻

  是閘源閾值電壓(MOSFET開始導(dǎo)通的閘電壓)

  緩衝器:

  漏電感可以被看作是與變壓器的次側(cè)電感串聯(lián)的寄生電感,其次側(cè)電感的部份沒有與二次側(cè)電感相互耦合。當開關(guān)MOSFET關(guān)閉時,儲存在次側(cè)電感中的能量透過正向偏置二體流動到二次側(cè)和負載。儲存在漏電感中的能量則變成了開關(guān)接腳(MOSFET汲)上巨大的電壓。漏電感可以透過短路二次側(cè)繞組來進行測量,而次側(cè)電感的測量通常由變壓器製造商給出。

  耗散漏電感能量的種常用方法是透過個與次側(cè)繞組并聯(lián)的齊納二體來阻斷與之串聯(lián)的二體實現(xiàn)的,如圖5所示。

  

 ?。▓D5:齊納箝位電路)


 

 

漏電感能量必須透過個外部箝位緩衝器來耗散:

  

  (24)

  齊納電壓應(yīng)低于開關(guān)MOSFET的zui大漏源電壓減去zui大輸入電壓,但要到足以在很短的時間內(nèi)耗散這能量才可以。

  齊納二體的zui大功率損耗為:

  

  (25)

  返馳式設(shè)計資源:

  為了支援返馳式設(shè)計,德州儀器公司開發(fā)特別適合返馳式應(yīng)用的系列PWM穩(wěn)壓器和器。圖6顯示個採用LM5000穩(wěn)壓器的5W返馳式電源,它是用WEBENCH進行模擬的,其輸入電壓變化範圍從10至35V,1A時的輸出電壓等于5V。該設(shè)計遵循上述過程,Coilcraft變壓器的次側(cè)與二次側(cè)匝數(shù)比等于3,次側(cè)電感為80μH,可良好的穩(wěn)壓輸出電壓,將次側(cè)峰值電流大幅地降至1.3A以下,也使內(nèi)部開關(guān)MOSFET兩端的zui大電壓低于60V。80μF的次側(cè)電感了二次側(cè)紋波電流峰-峰值在平均電流的3以內(nèi),同時保持20kHz以上的右半平面零點。

  

  圖6:採用WEBENCH線上模擬工具的5W返馳式設(shè)計

  WEBENCH是德州儀器公司的網(wǎng)上設(shè)計工具,用四個簡單步驟即可完成實現(xiàn)個完整的開關(guān)電源設(shè)計。圖7和圖8顯示了用WEBENCH設(shè)計獲得的波德圖(Bode plot)和開關(guān)波形。

  

 ?。▓D7-8:輸出電壓和開關(guān)接腳的波德圖和開關(guān)波形)

西安浩南電子科技有限公司

西安浩南電子科技有限公司

工廠地址:西安高新一路6號前進大廈705室

©2018 版權(quán)所有:西安浩南電子科技有限公司  備案號:陜ICP備08004895號-2  總訪問量:492231  站點地圖  技術(shù)支持:化工儀器網(wǎng)  管理登陸

聯(lián)系方式

13991872250

029-88231631